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Abstract-A model of the turbulent mixing of reagents is presented which involves the coupled 
integrodifferential equations for the functions that describe the distribution of the turbulent energy and 
of the root-mean-square value of scalar field fluctuations over different length scales, and also for the 
characteristic function which represents the Fourier transform of the one-point probability density of 
scalar field fluctuations. The model is intended to calculate the mean rate of chemical reaction in a 
turbulent flow in the case of ‘very fast chemistry’. A numerical solution is given for the system of equations 
for different conditions and comparison with experimental data is made. The possible way of extending 

the model to the case of a ‘moderately fast chemistry’ is suggested. 

INTRODUCTION 

WHEN studying the turbulent mixing of reacting gases 
it is important to distinguish between two aspects of 
the process: the dynamics of the length scales and the 
dynamics of the scalar field concentration scales of 
reagents. The length scale dynamics are determined 
by the turbulent microscopic motion of mixing gases. 
The concentration scale dynamics are connected with 
the effect of molecular diffusion. The interaction 
between these two aspects of turbulent mixing occurs 
due to the evolution of the spectrum of length scales 
creating steadily varying boundary conditions for 
molecular diffusion. 

In the present paper the consideration will be 
limited to the following problem. Let two reagents, A 
and B, mix up in a turbulent flow and the chemical 
reaction produce the product P 

A+nBzI’. (I) 

Here n is the stoichiometric coefficient, w, is the 
chemical reaction rate in the case when the reagents 
A and B are mixed up into a homogeneous molecular 
mixture. This quantity will be regarded as being much 
greater than the rate of turbulent mixing of reagents 
w,, thus limiting the discussion to the case of large 
Damkohler numbers 

Da=?. 
Wt 

As is known Cl], in order to determine the mean 
rate of chemical reaction in a turbulent flow it is 
sufficient in this case to know the statistical properties 
of one passive scalar field determined by the formula 

Qx, t) = nC,(x, t) - C,(x, t). (3) 

The scalar field C(x, t) is described by the equation 

I 

$+u~VC=DAC (4) 

Here u is the velocity field, the equation for which 
will be given later; D is the diffusion coefficient which 
is taken to be the same for both reagents A and B. 

In the case when there are chemical reactors into 
which each of the components A and B enter as one 
or more jets, then, by designating these jets by the 
numbers 1 and 2, respectively, it is possible to write 
the boundary conditions for the scalar field over the 
inlets to the reactor in the form 

Cl1 = hC,, (5) 

where CA0 is the concentration of reagent A at the 
inlet to the reactor numbered 1 

Clt = -C,, (5’) 

where CBO is the concentration of reagent B at the 
inlet to the reactor numbered 2. 

Thus, the passive scalar field C(x,t), defined by 
equality (3), is described by equation (4) with boundary 
conditions (5) and (5’). 

The mean concentration of reagent A can be 
calculated by the formula 

<C,(r)> = 1 
bla+B 

s 
(C + 1 - B)f;(C)dC. (6) 

n 8-l 

Here f;(C) is the probability density function of the 
scalar field fluctuations c = C - <C), which, in the 
case of an isotropic Aow behind a grid, depends on 
the time variable t and, in the case of one-dimensional 
treatment of inhomogeneous flows, depends on the 
longitudinal coordinate x. The quantity fl determines 
the relationship between the concentrations of 
reagents A and B prior to their mixing 
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NOMENCLATURE 

g(r, x) two-point second-order moment of P,(r) distribution of the turbulent velocity 
the turbulent reagent scalar field fluctuation energy over different 

c(x, r) fluctuation of scalar field C(x, t), length scales 
C(x, t) - <Qx, r)> P!!(r) 

C(x, t) 
distribution of the intensity of 

passive scalar field determined by fluctuation c(x, t) over different 
formula (3) length scales 

4x) root-mean-square value of scalar TJr) two-point, third-order moment of 
fluctuations, (c*(x))/(c*(O)) the turbulent reagent scalar field 

Da Damkohler number V(x) cross-section-mean flow velocity 
f,(C) probability density function of the W, chemical reaction rate 

scalar field fluctuations W1 rate of turbulent mixing of reagents. 
F(x) fractional conversion, 

1 - c<s4>/(m>l Greek symbols 
N(x) rate of scalar fluctuation intensity cp,(q) one-point characteristic function of 

dissipation scalar field c(x, t). 
W) rate of pumping of the scalar field 

turbulent fluctuation intensity 

(7) 
the entire process of turbulent mixing to the molecular 
level, consider, for example, the mixing of the scalar 

The quantity j? is called the stoichiometric ratio, it 
determines the ratio of the mean concentrations of 
reagents B and A in the initial cross-section of the 
reactor 

< Gdw 
B = n(C,(O))’ (8) 

Note, that all the quantities in formula (6) are nondi- 
mensionalized through division by the quantity 

n(C,(O)>. 
It is clear that the quantities (C,(O)) and (C,(O)) 

should be prescribed independently of the quantities 
C,, and CA0 since their magnitudes are determined 
by the conditions of the supply of reagents to the 
reactor. The probability density function j&C) in the 
initial cross-section, where the reagents A and B are 
in a completely segregated state, is determined by the 
expression 

h(C) = j&3 C/WC + 1 + I9 

+ bxc - B/B - m (9) 

from which it is seen that for the nondimensionalized 
fluctuations of the field C the distribution function 
depends on two dimensionless parameters /I and fl. 

To describe qualitatively and quantitatively the 
process of turbulent mixing of reagents it is convenient 
to have two functions which would characterize the 
field c(x, t): the function pf(r), which describes the 
distribution of the intensity of fluctuations c(x, t) of 
the field C(x, t) over different length scales, and 
the function J(C), which describes the probability 
distribution of the fluctuations c(x, t) of the scalar field 
C(x, t). Using these two functions for the description of 

field in an isotropic turbulent flow. On having intro- 
duced, into a gas flow behind a grid which produces 
the turbulent field of velocity fluctuations, the scalar 
field with the aid of another grid, the evolution of this 
field will provide a good example of the process of 
turbulent mixing. Over the initial stage of mixing 
there occurs the formation of the range of the scalar 
field length scales resulting in the evolution of the 
function e(r) from the form, which corresponds to 
the presence of mainly large-scale scalar formations 
in the flow with the length scale of the order of the 
size of the grid mesh, up to a smooth function, which 
corresponds to the presence in the flow of scalar 
formations of all possible scales. The one-point prob- 
ability density f,(C) remains nearly the same at this 
stage of mixing. Though the reagents are mixed, on 
average by large vortices, they do not come into 
contact yet and, therefore, each of them is in a pure 
form in the flow and there are no intermediate 
concentrations. The probability density ft(C) has the 
form of the sum of two B-functions, equation (9). Next, 
the small-scale flow structure becomes operative in 
the mixing. A further intensive development of the 
ranges of scales takes place, and, consequently, of the 
form of the function pf(r). The probability density of 
concentrations f,(C) still varies insignificantly. Only 
when a noticeable fraction of the Kolmogorov order 
length scales appears in the flow and the boundary 
of contact between the two reagents becomes rather 
developed, does the culminating stage of the process 
of mixing begin. As a result, a large amount of 
a homogeneous mixture appears in the flow. The 
probability density of concentrations f;(C) undergoes 
a strong variation: when at the beginning it could be 
approximated by formula (9), then at the end this is 
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a smooth function indicating the presence of concen- 
trations of all the magnitudes in the flow. During this 
stage the function pf(r) varies slowly tending to zero 
at small values of r, because small length scales decay 
faster than large ones. Having further traced the 
process of mixing, it is possible to see that finally f;(C) 
acquires the form close to 6(C) indicating the presence 
of a homogeneous mixture in the flow and the absence 
of the fluctuations of concentrations. In this case the 
function c(r) tends to zero at all values of r. 

It follows from the aforegoing representation of 
turbulent mixing that the functions c(r) and I;(C) are 
rather sensitive indicators of the process and are 
suited for its qualitative and quantitative description. 

DETERMINATION OF THE FUNCTIONS Pp(r), 
f,(C) AND p,(r) 

Thus, far, the functions Pf(r) and f,(C) have been 
considered only qualitatively, leaving aside the prob- 
lem of their formal determination in terms of the 
measured statistical characteristics of turbulence. As 
a function describing the scalar field fluctuation 
distribution intensity over diffeient length scales it is 
possible to select the spectral function E’(k,t), the 
correlation function F(r, t), the structural function 
D’(r, t), or the function e(r) connected with the above 
functions by the following formulae 

c(r) = - & E(r, t) 

= i$D’(r,t) 

1 kE’(k, t) dk. (10) 

In all the designations the superscript ‘c’ is the symbol 
of the scalar field. The physical meaning of the 
function pC(r) as the turbulent scalar field fluctuation 
density is well illustrated by the following equality 

s 

m 
e(r) dr = F(0, t) = (c*(t)) (lo’) 

0 

where (C’(C)) is the r.m.s. intensity of scalar field 
fluctuations. 

When the function c(r) is known, any of the 
functions lY(r, t). DC@, t), E’(k, t) can be calculated from 
the following formulae: 

OD 
F(r, t) = 

s 
PC(r) dr; 

I 

D’(r, t) = 2 
s 

e(r)dr; (11) 
0 

E’(k, t) = f 
s 

m (sin kr - kr cos kr)Pf(r) dr. 
0 

As a function which would describe the probability 
distribution of scalar field fluctuations c(x,t), it is 
possible to take the probability density function J(C) 
or the one-point characteristic function, coupled with 
the former through the Fourier transform, 

8/B+@ 
V,(V) = 

s 
eivCS,(C) dC; 

-(1+&v 

X(C)=& 
5 

m 

e-i”C&q)dq. (12) 
-m 

Here the variable C is nondimensionalized through 
the division by the quantity n(C,(O)). 

In the present paper the characteristic function 
q,(q) will be used. 

In what follows a function will be needed which 
would describe the turbulent velocity fluctuation 
energy distribution over different length scales. For 
this function it is possible to take the energy spectral 
density E(k, t), the correlational function B(r, t), the 
structural function D(r, t) or their related function 

p,(r): 

P,(r) = -iB(r,t) = i$D(r,t) 

=f{[&i-&+kr 

- & cos kr kE(k, t) dk. (13) 

The physical meaning of the function P,(r) as the 
turbulent fluctuational energy density in the space of 
length scales is seen from the following equality 

5 

m 
2 

P,(r) dr = B(0, t) = - 4 
3 (14) 

0 

where q is the r.m.s. energy of turbulent velocity 
fluctuations. 

As shown earlier [2], the function P,(r) has some 
advantages over the other listed functions in the 
theoretical description of turbulence. The main argu- 
ment for the selection of the function P,(r) is its 
decaying form in the inertial range of scales thus 
admitting the assignment of this function at any r 
without reference to the system size. The other func- 
tions, for example D(r) and E(k), do not possess this 
property. Moreover, the function P,(r) is directly 
connected with the correlational function of the 
velocity field vorticity w = rot u [2] 

(w;wy) = ( > g + p P,(r). 

The vorticity approach to the turbulence theory 
seems to be intuitively more substantiated than that 
based on the velocity field. In the present paper, the 
functions P,(r) and e(r) will be used to describe the 
spectral state of the flow. 
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When the function P,(r) is known, then any of the 
functions B(r, t) and D(r, t) can be calculated from the 
formulae similar to formula (11). The function E(k, t) 
can be calculated from the formula 

[(3 - k2r2) sin kr - 3kr cos kr]P,(r)dr. (15) 

A CLOSED EQUATION FOR PC(~) 

Since the field 4x, t), defined by formula (3), is the 
field of the passive scalar, the following equation can 
be used as the initial equation for the fluctuations 
c=e-<c> 

ac a(k) 

at + axi 2 = DAc + cp(x, t). (16) 

Here cp(x,t) is the external casual force with the 
prescribed statistical properties: normal distribution 
of probabilities and the &correlativeness in time [3]. 
The parameters of this distribution will be so selected 
that this term could model the influence of the change 
in the scalar field mean characteristics on the field of 
fluctuations. 

The field of velocity fluctuations ui in equation (16) 
will be described by the following equation 

au; au;u; i ap -- 
at= ax, 

ah: 
-(P>dx, + ‘aXkaXk 

+ _/xx, 0. (17) 

Here (uk) is the mean velocity determined by the 
homogeneous deformation rate which will be con- 
sidered as given; (p) is the mean medium density 
which is also a given function; f;(x,t) is the external 
casual force in terms of which the interaction between 
the velocity fluctuations and the mean flow will be 
taken into account. 

Equation (17) is valid in the coordinate system 
moving with the velocity U(x). It differs from the 
equation of isotropic turbulence with a time-varying 
density [4] by the presence of the term fi(x,t). This 
term in equation (17) is taken to be the external casual 
force with the prescribed statistical properties: the 
normal distribution of probabilities and &correlative- 
ness in time. In this case, the distribution parameters 
are so selected that this term could model the trans- 
port of energy from the mean velocity field to the 
fluctuational velocity field. The model, represented by 
equation (17), can be used to describe the fluctuational 
velocity field in the inhomogeneous turbulent flow 
field. The main aspects of the interaction between the 
fluctuational field and the inhomogeneous turbulent 
flow will be taken into account by the last three terms 
on the RHS of equation (17). 

By resorting to the familiar technique of the correl- 
ational function derivation from the equation for 
fluctuations and also by using the results of work [4], 
representing the variation of (uk) in terms of the flow 
deformation parameters, the definition of equation 
(10) and the analogy between the turbulent and 
molecular diffusion to bring about the closure, then 
it is possible to obtain a closed equation for the 
function c(r) [lo]. Then, converting to the fixed 
coordinate system and limiting the discussion to the 
case stationary in time, the following form of the 
closed equation for the function PX(r) can be obtained: 

+ 2[D(x) + fi[J’mdr’] 

+ 4N,(x)-L 
rz 

L,z(x) exp [ 1 _L,2(x) 
(18) 

Here D(x) is the kinematic diffusion coefficient which 
can depend on the longitudinal coordinate because 
of the change in the mean temperature 

N,(x) is the rate of pumping of the scalar field 
turbulent fluctuation intensity, L,(x) is the scalar field 
macroscale; the pumping of the scalar fluctuation 
intensity takes place over the scale of the order of 
L,(x). The functions U(x), Q(x), N&X) and L,(x) are 
the prescribed parameters within the framework of 
the present approach and can be obtained experi- 
mentally or calculated from the solution of a one- 
point momentum model. 

The boundary condition for the function Fx(r) at 
x = 0 can be taken in the form 

PO(r) = Z.%!? exp 
r2 

L,z(O) [ 1 _L,2(0) . 
(20) 

Formula (20) may prove useful in the case of a scalar 
turbulent field with one characteristic scale L,(O). If 
in the initial cross-section there is a developed range 
of length scales, then it is possible to make an attempt 
to approximate the initial function by the following 
formula 

where f(& L,; a,) is the scale probability density 
function which depends on both the mean scale and 
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variance of scales. The distribution of the probabilities 
f(A, L,, a,) can be selected differently. For example, it 
is possible to select the uniform, the Poisson, or any 
other distribution. By varying the parameters of the 
selected distribution, it is possible to choose the form 
of the function PO(r) close to the experimental one. 
The constant B in equation (18) can be coupled with 
the constant s in the ‘2/3 law’ for the structural 
function Dc(rr t) by solving this equation in the inertia- 
convective range of scales. The corresponding formula 
has the form [lo]: 

2.4 3 
p= 

+ CS 
(24 

Here c is the constant in the ‘2/3 law’ for the velocity 
structural function. Since s = 2.8 and c = 1.9 133, 
/I = 1.08. 

Equation (18) involves the function P,(r) for which 
a separate equation should be written. In the same 
approximation as for equation (18), the following 
closed equation can be obtained for the function P,(r) 
[lo]: 

+ ++I + yj-);(;;idr’] 

> (“> 
P,(r)-@f(x) 3+rd, P,(r) 

+ 4e (x)-I1- 
r2 

3 p L2(x)eXp [ 1 -t2(X). 
(23) 

Here v(x) is the kinematic viscosity coefficient; sp(_x) 
is the rate of turbulent energy pumping from the side 
of the mean velocity field; Z_(x) the macroscale of 
the fluctuational velocity field; the pumping of the 
turbulent energy is made over the scale of order I_(x). 
Just as in the case of equation (18), the functions U(x), 
q(x), .sp(x) and L(x) should be given. The boundary 
condition for the function P,(r) can be taken in the 
form of equation (20) or (21) with the replacement 
L,(O) + L(O), E(O) -+ B(O), cr, + Q, where c is the vari- 
ance of length scales for the velocity field in the initial 
cross-section. The constant y in equation (23) can be 
expressed in terms of the constant c from the ‘2/3 law’ 
for the structural velocity field function by solving 
this equation in the inertia range of scales. The 
corresponding formula has the form [lo]: 

12 

IJ = @c3/2' 
(24) 

Since c = 1.9, then y = 0.24. 
The system of equations (18) and (23) with the 

corresponding boundary conditions and familiar 
background functions U(x), 4(x), N,(x), .sp(x), L,(x), 
and L(x) can be solved numerically to obtain the 

evolution of the functions P,(r) and FAr) along the 
axis x. By solving the system of equations (18) and 
(23) it is possible to calculate the evolution of some 
of the parameters of these functions which more 
clearly illustrate the process of turbulent mixing. 
The rate of scalar fluctuation intensity dissipation is 
calculated by the formula 

N(x) = 3Dp_y$P,(r). 

The intensity of scalar fluctuations is determined from 
formula (10’). Of certain interest are the mean scale 
evolution and the variance of the scalar fluctuational 
field scales 

s a) 

rFx(r) dr (26) 
0 

a(x) = (12(x)) - <l(x))2. (27) 

Some of these characteristics are required to solve the 
equation for the one-point characteristic function. 

A CLOSED EQUATION FOR THE PROBABILITY 
DISTRIBUTION OF SCALAR FIELD VALUES 

The problem of the derivation of a closed equation 
for the function f,(C) which describes the distribution 
of the scalar field probabilities turns to be rather 
involved [S]. It is possible to state that as yet there 
is no wholly satisfactory form of the closed equation 
for fX(C). Most interesting solutions of this problem 
are suggested in works [6,7] on whose basis a number 
of practical calculations were carried out. 

In the present work a closed equation is suggested 
for the characteristic function cp,(q), which is connec- 
ted with the function fJC) by formulae (12). 

The process of turbulent mixing in terms of the 
characteristic function q,(q) for the fluctuational field 
c = C - (C) in the simplest case of /I = /? = 1 is as 
follows. At the initial time instant, to the entirely non- 
mixed field (nondimensionalized through division by 
the quantity n( C,(O))) there corresponds the function 

V,(V) = cos 2tl. (28) 

To the sinusoidal, i.e. slightly mixed, field c(x, t) there 
corresponds the function 

%(tl) = Jo(2tl)t (29) 

where Jo(x) is the zero-order Bessel function. 
When the field c(x,t) is rather well mixed and 

the distribution of the probabilities of fluctuations 
becomes uniform, then to this state there corresponds 
the characteristic function 

sin 2~ 
%(tl) = 7’ (30) 

Passing through a number of intermediate forms, the 
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function q,(q) for the flow, mixed up to the molecular 
level, acquires the form 

cp,(rl) = 1’ (31) 

The use of the characteristic function instead of the 
probability density gives some advantages. Thus, it 
makes the introduction of d-functions unnecessary 
and this is of importance for numerical solutions of 
equations. The region for the determination of the 
function (p,(q) represents an infinite interval which 
poses certain difficulties in solving equations and 
computing integrals. 

Using equation (16) as a dynamic equation for the 
scalar field fluctuations C(X, t) and assuming that the 
field of velocity fluctuations varies in conformity with 
equation (17), it is possible to obtain a closed equation 
for the function q,(q) [8,9]. In a fixed coordinate 
system it can be written as 

_ (a + 1)Cal) - cp%)l 
rr(x) ’ 

(32) 

Here the function m(x) is determined by the following 
formula 

R(x) = N(x) - N,(x) (33) 

where N(x) is determined by formula (25). 
The function N(x) designates the rate of scalar 

fluctuation intensity dissipation. The function N,(x) 
determines the rate of this intensity pumping from 
the side of the mean field and, within the framework 
of the present approach, is a given parameter which 
can be calculated by solving a one-point turbulent 
model or measured experimentally. 

The function d(x) is determined by the formula 

(qx) = o>. 
<cw 

The value of the parameter c( satisfies the condition 
a < 0.2 which follows from the requirement that the 
moments calculated from the function (P&J) should 
vary monotonously. The specific value a = 0.18 was 
selected by comparing the predicted results with the 
experimental data of work [l]. 

The characteristic relaxation time T,(X) is prescribed 
by the formula 

T (X) * = <czo>. 
NC4 

The function cpz(g) is determined as follows 

cp,O(rl) = exp 
{ 

-$~~<c’(x)>Cf - 441 . 
I 

(36) 

As the boundary condition along x for the function 

q,(q) one may take to be the function in the form of 
equation (28) which corresponds to a fully segregated 
state of the scalar field. 

SOLUTION OF THE SYSTEM OF EQUATIONS 

Thus, the proposed statistical model of turbulent 
mixing involves three equations: (18), (23), (32). This 
system was solved numerically for the case when 
the pumping of turbulence energy and of scalar 
fluctuation intensities is equal to zero and the entire 
process of evolution is governed by the damping of 
the magnitudes of these quantities prescribed in the 
initial cross-section. As the boundary condition for 
P!‘,(r) at x = 0 use was made of the function in the 
form of equation (21) with f,(l, L,, cc) in the form of 
uniform distribution 

j-(/L, L,, a,) = L UC{ [r-(Lc-$1 e 

-8[r-(L,+?)]} (37) 

where e(x) is the Heavyside function. 
In this case the function PO(r) has the form 

The boundary condition for the function P,(r) was 
selected in the form similar to that of equation (38) 
with the replacement E(O) + B(O), L, + L, CT, -+ u, 
where B(O), L, u are the r.m.s. energy, mean scale and 
variance of velocity field scales. 

The initial condition for the characteristic function 
cp,(q) was selected in the form 

+ Bsin(v(i + P))]} (39) 

which represents the Fourier transform of the function 
so(C) in the form of equation (9) and describes the 
one-point statistics of completely segregated scalar 
field fluctuations C(x, t) determined by formula (3). 

Since the characteristic function is generally a 
complex one, then equation (32) is split up into two 
equations for the the real and imaginary parts of the 
function rp,(q). 

The mean reagent concentration at an arbitrary 
point x is calculated by the formula 
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x 

FIG. 1. (a) Evolution of the function P,(r) for the case of a 
‘fast chemical reaction’. (b)Variation of the mean rate of 

scalar fluctuation intensity dissipation. 

<C,(x)> = ; ,o I{ cpfj(tl) (1 + B/&in(rl~ + WB + 8)) 
tl 

+ cos(tl,+,WB + B)) - COSMB - 1)) 
‘I2 

+ dh) 
[ 

(1 + B//%os(tl~+,wB + m - 
rl 

+ sWf+#J/B + B)) - sin(rl(B - 1)) 
‘I2 II . 

dtl 

(40) 

Here rfC+) = (1 + a), 6 -+ 0, 6 > 0, cp!j(rf), C&(V) are the 
real and imaginary parts of the characteristic function 

CPM. 
Formula (40) can be obtained from expression (6) 

with the aid of formulae (12). 
It is seen from the predicted results for the function 

PX(r), which are given in Figs. l(a) and (b), that in the 
initial stage the evolution of this function reduces to 
its extension to the side of smaller scales. Here the 
mean scale decreases sharply, the dissipation rate 
N(x) increases [Fig. l(b)] being indicative of the small- 
scale turbulent mixing in the flow. Starting from 

-I . 

O- 

-I _ 
0 

FIG. 2. Evolution of the real (a) and imaginary (b) parts of 
the characteristic function q,(q) in the case of a ‘fast chemical 

reaction’ at /I = 2 and SC - 103. 

x - 0.03, the fast stage of mixing terminates and a 
slow evolution of the function P:(r) begins. The mean 
scale starts to increase and the rate of dissipation to 
decrease. In this stage the form of the function PX(r) 
becomes less sensitive to a change in the scalar field 
structure. However, a more intensive evolution of the 
characteristic function q,(q) begins in this case. It 
is seen from Figs. 2(a) and (b) that equation (32) 
qualitatively models the behaviour of this function, 
indicating the formation of a homogeneous mixing 
from formerly separate reagents. 

Figure 3 presents the results of calculation of the 
dependence of the mean reaction rate of the r.m.s. 
fluctuations at different values of the stoichiometric 
ratio B and gives a comparison with the experimental 
data from work [l]. It is seen that the proposed 
model gives an adequate description of the experimen- 
tal results in the case of a very fast chemical reaction. 

THE CASE OF A MODERATELY FAST CHEMICAL 
REACTION 

The proposed statistical model of the mixing of 
reagents, somewhat improved, can also be used to 
estimate the mean time of chemical reaction in the 
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IO- 

08- 

0 02 04 06 08 

1-m 

FIG. 3. Comparison of experimental data [l] with the results 
predicted on the basis of the ‘fast chemical reaction’ model 

for different values of 8. 

case of comparable characteristic times of reaction 
and turbulent mixing, i.e. for the case of moderate 
Damkiihler numbers. Then, the mean concentration 
of reagent A should be determined from the equation 

U(x) d(CA(x)) -= 
dx 

(w (x)) A 

where wA(x) is the source term. 
A conventional expression for the source term has 

the form 

w,(x) = k( T)CACB. (42) 

Even with the temperature fluctuations ignored, a 
two-dimensional probability distribution function is 
required to obtain the mean value (wA(x)). To remain 
at the level of one-dimensional distribution, it will be 
assumed that the concentrations of reagents A and B 
are coupled through the relation 

C,(& r) + C,(x, t) = CO. 

where Co is the maximum concentration of reagents. 
With regard to this coupling, the expression for 

wA(x) will have the form 

wA(x) = k(T)CA(CO - cA). (43) 

The introduction of new variables 

k = k(T)C,; 
WA 

WE- 

CO 
w 

will yield the following expression for w 

w = l&l - C). (45) 

Expression (45) is convenient as it is determined by 
the concentration field of only one scalar with its 
value depending entirely on the quality of mixing. 
The value of w is indeed close to zero at those points 
where C = 0 or C = 1, i.e. where there are pure 
reagents; the quantity w has the maximum at the 
points where C = 0.5, i.e. where uniform mixing of 

reagents is attained [lo]. 
The equation for the mean concentration (C) with 

the source term in the form of equation (45) acquires 
the form 

U(X) d(e) - = -k[(C)(l - (C)) - (c’)]. 
dx 

(46) 

Here c = C - (C). 
The r.m.s. value of the fluctuations of reagent (c*) 

can be calculated from the formula 

<c*> = -$rp:(4)lPr=o (47) 

where cp:(n) is the real part of the characteristic 
function of the reagent A field. 

The equation for the characteristic function cp,(n) 
will have the same form as that of equation (32) with 
the RHS having only the source term w* in the form 

i(c') + (1 - 2<S))$ + i-$ -I q,(q) 

(48) 

The initial condition for the function cpX(n) is 

rpo(s) = C(f - (Co>)costl(Co> 

+ (~o)cos(tl(f - (Co>))1 
+ i[-(1 - (C,>)sin~(C,> 

+ (Co>sin(N - (Co>))l. (49) 

The value of (Co) can be taken between 0 and 1. 
To solve the equation for the characteristic function, 

it is necessary to know the functions N(x) and d(x) 
which are calculated from the function F,(r) by 
formulae (33), (34), (35) and (10’). The equation for 
Pff(r) will differ then from equation (18) by the presence 
of the source term on its RHS 

fiP = -2k(l - 2(6))PeF(r) - 2k$ T,(r). (50) 

Here the function T,(r) is the two-point, third-order 
moment of the turbulent reagent scalar field 

T,(r) = (c*(x)c(x + r)). (51) 

For this function the following approximation was 
used 

BP, 4 
U-1 = VW--- m, 4’ 

(52) 

Here T,(O) is the one-point, third-order moment 
of the field c(x,t). It can be calculated from the 
characteristic function by the following formula 
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FIG. 4. (a, b) Comparison of experimental data [i] with the 
results predicted on the basis of the ‘moderately fast chemical 

reaction’ model for Da = 7 and SC _ 103. 

(53) 

Taking into account formula (52) and also formulae 

(9) and (lo), the equation for mP can be rewritten in 
the form 

1 - 2(&)) - $$ 1 W). (54) 

The function PJr), required to solve the equation for 

pfX(r), can be. found from equation (23). The initial 
conditions for the functions px(r) and P,(r) can be 
selected to be the same, as in the case of the passive 
scalar, i.e. in the form of equation (38). 

Thus, besides equation (46) for (c(x)), the model 
of the mixing of reagents in the case of moderately 
fast chemistry includes equation (32) for cp,(q), aug- 
mented on the RHS with the source term (48); 
equation (18), augmented on the RHS with term (54); 
and equation (23) for P,(r). The results of calculations, 
presented in Figs. 4(a) and (b), indicate that the model 
can be used to estimate the chemical reaction mean 
rate depending on the conditions of the problem. 
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UN MODELE D’ECOULEMENT STATISTIQUEMENT TURBULENT AVEC REACTION 

R&m&On prksente un modtle du mklange turbulent de rkactants qui utilise les kquations coupltes 
inttgrodiff&rentielles pour les fonctions qui dkcrivent la distribution de 1’Cnergie turbulente et de I’tcart- 
type des fluctuations scalaires sur diffkrentes kchelles de longueur, et aussi pour la fonction caractkristique 
qui reprCsente la transformee de Fourier de la densit& de probabilit& des fluctuations scalaires. Le modile 
permet le calcul de la vitesse moyenne de la r&action chimique dans un kcoulement turbulent pour une 
“chimie trts rapide”. Une solution numerique est donnee pour le systeme d’kquations avec difft%-entes 
conditions et une comparaison est faite avec des don&es exp&rimentales. On suggtre la voie possible 

d’extension du modkle dans le cas d’une “chimie modCr&ment rapide”. 
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EIN STATISTISCHES MODELL TURBULENTER REAGIERENDER STROMUNG 

Zusammenfassung-Es wird ein Model1 der turbulenten Vermischung von Reaktanden vorgestellt, welches 
die gekoppelten Integro-Differential-Gleichungen fur die Verteilung der turbulenten Energie und des 
ElTektivwertes der skalaren Schwankungen iiber unterschiedliche Langen und fur die Fourier-Trans- 
formation der punktuellen Wahrscheinlichkeitsdichte der Schwankungen des Skalarfeldes enthalt. Das 
Model1 ist fiir die Berechnung der mittleren Reaktionsgeschwindigkeit in turbulenten Stromungen im 
Bereich der “schnellen Chemie” vorgesehen. Es wird eine numerische Ldsung des Gleichungssystems fiir 

unterschiedliche Bedingungen angegeben, ein Vergleich mit experimentellen Daten wurde durchgefiihrt. Die 
Miighchkeit einer Erweiterung des Modells fiir den Fall der “mittelschnellen Chemie” wird vorgeschlagen. 

CTATMCTMYECKAX MOflEJIb TYP6YJIEHTHOFO PEAFAPYLOLLLEL-0 TIOTOKA 

AHHOTa4lm-npenCTaBneHa Moflenb Typ6yJIeHTHOrO CMeIueHm peareHToB, BKmoYakoIIIa~ TpM CB113aH- 

H~IX mTerponn+$epeHu~anbHbIx ypaeHeHm ms @yHKukSi, omcbmamwx pacnpenenewie 3Heprm 

Typ6y,IeHTHOCTH,CpeL,HeKsanpaTWIHOfi BeJIWI~HbI+"yKTyauHi?CKa~~pHO~O uOJIR "0 pa3JIWIHbIM MaCUI- 

ra6aM LWiHbI HAJIll XapaKTepuCTWIeCKOii I$~HKW~H,SIBJIRKW~~~I IIpt?O6pa30BaHHeM~ypbeONIOTO'Ie'I- 

HO&? WIOTHOCTB BepOrTHOCTH 3HaYeHHii $UIyKTyaIWir CKXW,pHOrO n0.M. 3Ta MOneJIb "pWHa3HaseHa 

J,JIll BbI%V2IeHIIR Cp.%IHek CKOpOCTA XESMHVeCKOii FaKIWH B Typ6yJIeHTHOM "OTOKe B CJIyYae NO'IeHb 

6bICTpOii XHMBA)). npHBefleH0 'IHCJEHHOe peIIIeH&E CBCTeMbI ypaBHeHAk Mff pa3JIHYHbIX yC,IOBHk A 

~aHOCpaBHeHAeC3KCIIepAMeHTaJIbHbIMRnaHHbIMW.YKa3aH B03MOxHbIii cnoco6 o6o6memin upeACTaB- 


