Int. J. Heat Mass Transfer. Vol. 30, No. 3, pp. 517-526. 1987
Printed in Great Britain

0017-9310/87 $3.00+0.00
Pergamon Journals Ltd.

A statistical turbulent reacting flow model

V. A. SOSINOVICH,* B. A. KOLOVANDIN,* V. A. TSYGANOV* and
C. MEOLAf}

* Heat and Mass Transfer Institute of the Byelorussian Academy of Sciences, Minsk, 220728, U.S.S.R.
t Istituto di Gasdinamica Universita degli Studi, Napoli, Italy

(Received 4 December 1985)

Abstract—A model of the turbulent mixing of reagents is presented which involves the coupled
integrodifferential equations for the functions that describe the distribution of the turbulent energy and
of the root-mean-square value of scalar field fluctuations over different length scales, and also for the
characteristic function which represents the Fourier transform of the one-point probability density of
scalar field fluctuations. The model is intended to calculate the mean rate of chemical reaction in a
turbulent flow in the case of ‘very fast chemistry’. A numerical solution is given for the system of equations
for different conditions and comparison with experimental data is made. The possible way of extending
the model to the case of a ‘moderately fast chemistry’ is suggested.

INTRODUCTION

WHEN studying the turbulent mixing of reacting gases
it is important to distinguish between two aspects of
the process: the dynamics of the length scales and the
dynamics of the scalar field concentration scales of
reagents. The length scale dynamics are determined
by the turbulent microscopic motion of mixing gases.
The concentration scale dynamics are connected with
the effect of molecular diffusion. The interaction
between these two aspects of turbulent mixing occurs
due to the evolution of the spectrum of length scales
creating steadily varying boundary conditions for
molecular diffusion.

In the present paper the consideration will be
limited to the following problem. Let two reagents, A
and B, mix up in a turbulent flow and the chemical
reaction produce the product P

A+nB%P. (1)

Here n is the stoichiometric coefficient, w, is the
chemical reaction rate in the case when the reagents
A and B are mixed up into a homogeneous molecular
mixture. This quantity will be regarded as being much
greater than the rate of turbulent mixing of reagents
w,, thus limiting the discussion to the case of large
Damkohler numbers

Da="2. )

As is known [1], in order to determine the mean
rate of chemical reaction in a turbulent flow it is
sufficient in this case to know the statistical properties
of one passive scalar field determined by the formula

C(x,1) = nC,(x,t) — Cy(x,t). 3)

The scalar field C(x, ?) is described by the equation
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%g+u~VC=DAC. (4

Here u is the velocity field, the equation for which
will be given later; D is the diffusion coefficient which
is taken to be the same for both reagents A and B.

In the case when there are chemical reactors into
which each of the components A and B enter as one
or more jets, then, by designating these jets by the
numbers 1 and 2, respectively, it is possible to write
the boundary conditions for the scalar field over the
inlets to the reactor in the form

C|1 =nCy (%

where C,, is the concentration of reagent A at the
inlet to the reactor numbered 1

Clz = —Cpyo (59
where Cg, is the concentration of reagent B at the
inlet to the reactor numbered 2.

Thus, the passive scalar field C(x,1), defined by
equality (3), is described by equation (4) with boundary
condittons (5) and (5').

The mean concentration of reagent A can be
calculated by the formula

818+ B

(A = %f (€ +1-PAOIC.  ©

-1

Here f,(C) is the probability density function of the
scalar field fluctuations ¢ = € — (), which, in the
case of an isotropic fiow behind a grid, depends on
the time variable ¢ and, in the case of one-dimensional
treatment of inhomogeneous flows, depends on the
longitudinal coordinate x. The quantity § determines
the relationship between the concentrations of
reagents A and B prior to their mixing
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B(r,x) two-point second-order moment of
the turbulent reagent scalar field

o(x,t)  fluctuation of scalar field C(x, 1),
Cx, 1) — <C(x, 1)

C(x,t) passive scalar field determined by
formula (3)

d(x) root-mean-square value of scalar

fluctuations, {c*(x))>/<{c*0)>
Da Damkdohler number

O probability density function of the
scalar field fluctuations

F(x) fractional conversion,
1 — [KCx)>/<CO)]

N(x) rate of scalar fluctuation intensity
dissipation

Ny(x) rate of pumping of the scalar field

turbulent fluctuation intensity

NOMENCLATURE

P.(r) distribution of the turbulent velocity
fluctuation energy over different
length scales

distribution of the intensity of
fluctuation c(x, t) over different

length scales

T(r) two-point, third-order moment of

the turbulent reagent scalar field
U(x) cross-section-mean flow velocity
w, chemical reaction rate

w, rate of turbulent mixing of reagents.

Greek symbols
¢{(n) one-point characteristic function of
scalar field c(x, t).

= CBO
nCAo'

M

The quantity B is called the stoichiometric ratio, it
determines the ratio of the mean concentrations of
reagents B and A in the initial cross-section of the
reactor

_ G0y
= 2CAD)Y ®

Note, that all the quantities in formula (6) are nondi-
mensionalized through division by the quantity
n{Ca(0)).

It is clear that the quantities {(Cy(0)> and {C,(0))
should be prescribed independently of the quantities
Cyo and C,, since their magnitudes are determined
by the conditions of the supply of reagents to the
reactor. The probability density function fo(C) in the
initial cross-section, where the reagents A and B are
in a completely segregated state, is determined by the
expression

B

1
folO) = Y [BS(C +1+ P
+BSC—BB-BL 9

from which it is seen that for the nondimensionalized
fluctuations of the field € the distribution function
depends on two dimensionless parameters § and .
To describe qualitatively and quantitatively the
process of turbulent mixing of reagents it is convenient
to have two functions which would characterize the
field c(x,t): the function P{(r), which describes the
distribution of the intensity of fluctuations c(x,t) of
the field C(x,t) over different length scales, and
the function f(C), which describes the probability
distribution of the fluctuations c(x, t) of the scalar field
C(x, t). Using these two functions for the description of

the entire process of turbulent mixing to the molecular
level, consider, for example, the mixing of the scalar
field in an isotropic turbulent flow. On having intro-
duced, into a gas flow behind a grid which produces
the turbulent field of velocity fluctuations, the scalar
field with the aid of another grid, the evolution of this
field will provide a good example of the process of
turbulent mixing. Over the initial stage of mixing
there occurs the formation of the range of the scalar
field length scales resulting in the evolution of the
function P{(r) from the form, which corresponds to
the presence of mainly large-scale scalar formations
in the flow with the length scale of the order of the
size of the grid mesh, up to a smooth function, which
corresponds to the presence in the flow of scalar
formations of all possible scales. The one-point prob-
ability density f,(C) remains nearly the same at this
stage of mixing. Though the reagents are mixed, on
average by large vortices, they do not come into
contact yet and, therefore, each of them is in a pure
form in the flow and there are no intermediate
concentrations. The probability density f(C) has the
form of the sum of two §-functions, equation (9). Next,
the small-scale flow structure becomes operative in
the mixing. A further intensive development of the
ranges of scales takes place, and, consequently, of the
form of the function P{(r). The probability density of
concentrations f(C) still varies insignificantly. Only
when a noticeable fraction of the Kolmogorov order
length scales appears in the flow and the boundary
of contact between the two reagents becomes rather
developed, does the culminating stage of the process
of mixing begin. As a result, a large amount of
a homogeneous mixture appears in the flow. The
probability density of concentrations f,(C) undergoes
a strong variation: when at the beginning it could be
approximated by formula (9), then at the end this is
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a smooth function indicating the presence of concen-
trations of all the magnitudes in the flow. During this
stage the function P{(r) varies slowly tending to zero
at small values of r, because small length scales decay
faster than large ones. Having further traced the
process of mixing, it is possible to see that finally £(C)
acquires the form close to §(C) indicating the presence
of a homogeneous mixture in the flow and the absence
of the fluctuations of concentrations. In this case the
function P{(r) tends to zero at all values of r.

It follows from the aforegoing representation of
turbulent mixing that the functions P{(r) and f(C) are
rather sensitive indicators of the process and are
suited for its qualitative and quantitative description.

DETERMINATION OF THE FUNCTIONS Pc(r),
£(C) AND P(r)

Thus, far, the functions P{(r) and f(C) have been
considered only qualitatively, leaving aside the prob-
lem of their formal determination in terms of the
measured statistical characteristics of turbulence. As
a function describing the scalar field fluctuation
distribution intensity over different length scales it is
possible to select the spectral function E‘(k,t), the
correlation function B¢(r,t), the structural function
D(r, t), or the function P{(r) connected with the above
functions by the following formulae

P = ~ L B0

18,
—EED (r,t)

“l'sinkr coskr|, .
_£ [(kr)2 Tk ]kE(k’t)dk. (10)

In all the designations the superscript ‘¢’ is the symbol
of the scalar field. The physical meaning of the
function P{(r) as the turbulent scalar field fluctuation
density is well illustrated by the following equality

j Pi(r)dr = BY0,1) = <)) (107
(1]
where <{c*(t)> is the r.m.s. intensity of scalar field
fluctuations.

When the function P{(r) is known, any of the
functions B(r, t), D(r, t), E°(k,t) can be calculated from
the following formulae:

Bi(r,t) = J P{(r)dr;
Di(r,t) = ZJva(r)dr; (11
0

E‘(k,t) = nik f (stn kr — krcos kr)P{(r)dr.
0
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As a function which would describe the probability
distribution of scalar field fluctuations c¢(x,?), it is
possible to take the probability density function f(C)
or the one-point characteristic function, coupled with
the former through the Fourier transform,

8B +8 ‘
odn = J " f(C)dC;
—(1+p
1 o

- - inC
2r )
o

() (12)

e "odn) dn.

Here the variable C is nondimensionalized through
the division by the quantity n{C,(0)).

In the present paper the characteristic function
@(n) will be used.

In what follows a function will be needed which
would describe the turbulent velocity fluctuation
energy distribution over different length scales. For
this function it is possible to take the energy spectral
density E(k,t), the correlational function B(r,t), the
structural function D(r,t) or their related function
P(r):

P(r) = —%B(r, t) = %%D(r, 1)
“l 3 1.
- 2L {[m - (T)] sinkr
3

— —— o8 kr} kE(k,t)dk. (13)

(kry?

The physical meaning of the function P(r) as the
turbulent fluctuational energy density in the space of
length scales is seen from the following equality

J. P(r)dr = B(0,t) = zq (14)
o 3

where g is the r.ms. energy of turbulent velocity
fluctuations.

As shown earlier [2], the function P(r) has some
advantages over the other listed functions in the
theoretical description of turbulence. The main argu-
ment for the selection of the function P(r) is its
decaying form in the inertial range of scales thus
admitting the assignment of this function at any r
without reference to the system size. The other func-
tions, for example D(r) and E(k), do not possess this
property. Moreover, the function P(r) is directly
connected with the correlational function of the
velocity field vorticity w = rotu [2]

o Jd 4
{wiwy =<5+;>P,(r).

The vorticity approach to the turbulence theory
seems to be intuitively more substantiated than that
based on the velocity field. In the present paper, the
functions P(r) and P{(r) will be used to describe the
spectral state of the flow.
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When the function P(r) is known, then any of the
functions B(r,t) and D(r, t) can be calculated from the
formulae similar to formula (11). The function E(k, t)
can be calculated from the formula

1
E(k,t) = p

f [(3 — k*r¥)sinkr — 3krcos kr]P{r)dr. (15)
0

A CLOSED EQUATION FOR Pte(r)

Since the field C(x, 1), defined by formula (3), is the
field of the passive scalar, the following equation can
be used as the initial equation for the fluctuations

c=C—<&
dc  d(uic)

ot 0x;

= DAc + o(x,1). (16)
Here ¢(x,t) ts the external casual force with the
prescribed statistical properties: normal distribution
of probabilities and the d-correlativeness in time [3].
The parameters of this distribution will be so selected
that this term could model the influence of the change
in the scalar field mean characteristics on the field of
fluctuations.

The field of velocity fluctuations u; tn equation (16)
will be described by the following equation

dui _ duju, 1 0P v o*u]
a  ox,  (pdox; Ox,0%,
N L

Up——
0xy xy

Here (u,> is the mean velocity determined by the
homogeneous deformation rate which will be con-
sidered as given; {p) is the mean medium density
which is also a given function; fi(x,t) is the external
casual force in terms of which the interaction between
the velocity fluctuations and the mean flow will be
taken into account.

Equation (17) is valid in the coordinate system
moving with the velocity U(x). It differs from the
equation of isotropic turbulence with a time-varying
density [4] by the presence of the term fi(x,¢t). This
term in equation (17) is taken to be the external casual
force with the prescribed statistical properties: the
normal distribution of probabilities and d-correlative-
ness in time. In this case, the distribution parameters
are so selected that this term could model the trans-
port of energy from the mean velocity field to the
fluctuational velocity field. The model, represented by
equation (17), can be used to describe the fluctuational
velocity field in the inhomogeneous turbulent flow
field. The main aspects of the interaction between the
fluctuational field and the inhomogeneous turbulent
flow will be taken into account by the last three terms
on the RHS of equation (17).
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By resorting to the familiar technique of the correl-
ational function derivation from the equation for
fluctuations and also by using the results of work [4],
representing the variation of {u,) in terms of the flow
deformation parameters, the definition of equation
(10) and the analogy between the turbulent and
molecular diffusion to bring about the closure, then
it is possible to obtain a closed equation for the
function P{(r) [10]. Then, converting to the fixed
coordinate system and limiting the discussion to the
case stationary in time, the following form of the
closed equation for the function P<(r) can be obtained:

000250 = 2p i &+ 2
+ 2[1)():) +8 'r JPP) dr’]
[}
62
(5

- <b(x)(1 v ra%)P:(r)

20 2
—-—r—z)P;(r)

ror

r r?
+ 4N (x}——exp| ——— |- 18
i) p[ Lf(x)] 9
Here D(x) is the kinematic diffusion coefficient which
can depend on the longitudinal coordinate because
of the change in the mean temperature

o — L2

o A= V<eODKex)y  (19)
N,(x) is the rate of pumping of the scalar field
turbulent fluctuation intensity, L (x) is the scalar field
macroscale; the pumping of the scalar fluctuation
intensity takes place over the scale of the order of
L.(x). The functions U(x), ®(x), Ny(x) and L.(x) are
the prescribed parameters within the framework of
the present approach and can be obtained experi-
mentally or calculated from the solution of a one-
point momentum model.

The boundary condition for the function Pi(r) at
x = 0 can be taken in the form

_2Boy [ ]
P = T30 “p[ £20)) @0

Formula (20) may prove useful in the case of a scalar
turbulent field with one characteristic scale L0). If
in the initial cross-section there is a developed range
of length scales, then it is possible to make an attempt
to approximate the initial function by the following
formula

P4(r) = 250 j %exp(—r—22>f(l; Lic) @)
7 2

where f(A; L. o) is the scale probability density
function which depends on both the mean scale and
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variance of scales. The distribution of the probabilities
f(4, L., a.) can be selected differently. For example, it
is possible to select the uniform, the Poisson, or any
other distribution. By varying the parameters of the
selected distribution, it is possible to choose the form
of the function P§(r) close to the experimental one.
The constant B in equation (18) can be coupled with
the constant s in the ‘2/3 law’ for the structural
function D*(r, t) by solving this equation in the inertia-
convective range of scales. The corresponding formula

has the form [10]:
24./3
-2
cs

Here c is the constant in the 2/3 law’ for the velocity
structural function. Since s =28 and ¢ =19 [3}
B =1.08.

Equation (18) involves the function P,(r) for which
a separate equation should be written. In the same
approximation as for equation (18), the following
closed equation can be obtained for the function P.(r)

[10]:

0o 20 =y Jr (2 + )y

+ 2|:v(x) + yf r'PAr) dr’:|
o

? 43 4 4
(572 +oo ;2—>P,,(r) - <I>(x)<3 + ’E)P"(’)

4 r r?
+ gep(x)mexp eI

Here v(x) is the kinematic viscosity coefficient; £,(x)
is the rate of turbulent energy pumping from the side
of the mean velocity field; L(x) the macroscale of
the fluctuational velocity field; the pumping of the
turbulent energy is made over the scale of order L(x).
Just as in the case of equation (18), the functions U(x),
O(x), e,(x) and L(x) should be given. The boundary
condition for the function P.(r) can be taken in the
form of equation (20) or (21) with the replacement
L(0) = L(0), B(0) — B(0), g, — o, where ¢ is the vari-
ance of length scales for the velocity field in the initial
cross-section. The constant y in equation (23) can be
expressed in terms of the constant ¢ from the ‘2/3 law’
for the structural velocity field function by solving
this equation in the inertia range of scales. The
corresponding formula has the form [10]:

12

11 /302

(22)

(23)

y (24)

Since ¢ = 1.9, then y = 0.24.

The system of equations (18) and (23) with the
corresponding boundary conditions and familiar
background functions U(x), ®{x), N(x), e,(x), L(x),
and L(x) can be solved numerically to obtain the
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evolution of the functions P.(r) and Pi(r) along the
axis x. By solving the system of equations (18) and
(23) it is possible to calculate the evolution of some
of the parameters of these functions which more
clearly illustrate the process of turbulent mixing.
The rate of scalar fluctuation intensity dissipation is
calculated by the formula

N(x) = 3D limﬁP‘(r). (25)

r—+0 ar *

The intensity of scalar fluctuations is determined from
formula (10). Of certain interest are the mean scale

evolution and the variance of the scalar fluctuational
field scales

l o0
Ax) = B [) rPyr)dr (26)
a(x) = /<Ax)> — <A 27

Some of these characteristics are required to solve the
equation for the one-point characteristic function.

A CLOSED EQUATION FOR THE PROBABILITY
DISTRIBUTION OF SCALAR FIELD VALUES

The problem of the derivation of a closed equation
for the function f,(C) which describes the distribution
of the scalar field probabilities turns to be rather
involved [5]. It is possible to state that as yet there
is no wholly satisfactory form of the closed equation
for f(C). Most interesting solutions of this problem
are suggested in works [6, 7] on whose basis a number
of practical calculations were carried out.

In the present work a closed equation is suggested
for the characteristic function ¢.(n), which is connec-
ted with the function f,(C) by formulae (12).

The process of turbulent mixing in terms of the
characteristic function ¢ (n) for the fluctuational field
¢ =C — (C) in the simplest case of f = f =1 is as
follows. At the initial time instant, to the entirely non-
mixed field (nondimensionalized through division by
the quantity n{C,(0)}) there corresponds the function

@) = cos 2. (28)

To the sinusoidal, i.e. slightly mixed, field c(x, ¢) there
corresponds the function

(px(r’) = J0(2’7)’

where J(x) is the zero-order Bessel function.

When the field c(x,t) is rather well mixed and
the distribution of the probabilities of fluctuations
becomes uniform, then to this state there corresponds
the characteristic function

(29)

sin 2y
2y

Oxln) = (30)

Passing through a number of intermediate forms, the
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function ¢,(n) for the flow, mixed up to the molecular
level, acquires the form

un) = 1. (31

The use of the characteristic function instead of the
probability density gives some advantages. Thus, it
makes the introduction of J-functions unnecessary
and this is of importance for numerical solutions of
equations. The region for the determination of the
function ¢@.(n) represents an infinite interval which
poses certain difficulties in solving equations and
computing integrals.

Using equation (16) as a dynamic equation for the
scalar field fluctuations C(x, t) and assuming that the
field of velocity fluctuations varies in conformity with
equation (17), it is possible to obtain a closed equation
for the function ¢.(n) [8,9]. In a fixed coordinate
system it can be written as

0s(n)

U=

= SN = o+ D 0.l)

_ e+ Do) — oxm]

{x)

(32)

Here the function N(x) is determined by the following
formula

N(x) = N(x) = Nyfx) (33)

where N(x) is determined by formula (25).

The function N(x) designates the rate of scalar
fluctuation intensity dissipation. The function N (x)
determines the rate of this intensity pumping from
the side of the mean field and, within the framework
of the present approach, is a given parameter which
can be calculated by solving a one-point turbulent
model or measured experimentally.

The function d(x) is determined by the formula

_ <6
()’

The value of the parameter a satisfies the condition
a < 0.2 which follows from the requirement that the
moments calculated from the function ¢ {(n) should
vary monotonously. The specific value o = 0.18 was
selected by comparing the predicted results with the
experimental data of work [1].

The characteristic relaxation time t(x) is prescribed
by the formuia

d(x) (34)

(2=

) = G

N(x (35)

The function @2(n) is determined as follows
1
@3 = CXP{ — 51D - a(x)]}- (36)

As the boundary condition along x for the function

@.(n) one may take to be the function in the form of
equation (28) which corresponds to a fully segregated
state of the scalar field.

SOLUTION OF THE SYSTEM OF EQUATIONS

Thus, the proposed statistical model of turbulent
mixing involves three equations: (18), (23), (32). This
system was solved numerically for the case when
the pumping of turbulence energy and of scalar
fluctuation intensities is equal to zero and the entire
process of evolution is governed by the damping of
the magnitudes of these quantities prescribed in the
initial cross-section. As the boundary condition for
Pi(r) at x = 0 use was made of the function in the
form of equation (21) with f,(4, L.,o,.) in the form of
uniform distribution

f('{’ Lc’ Uc) = Ul{gl:r - (Lc - %)]
- O[r - (Lc + "—>]} 37)

where 0(x) is the Heavyside function.
In this case the function P(r) has the form

Pf)(r)=‘/;fc © [m( r )

L.—a./2

i
- f(m)] %)

The boundary condition for the function P, (r) was
selected in the form similar to that of equation (38)
with the replacement B<(0) - B(0), L.~ L, 6. —> o,
where B(0), L, o are the r.m.s. energy, mean scale and
variance of velocity field scales.

The initial condition for the characteristic function
¢.{(n) was selected in the form

1
@oln) = m{[ﬁ cos(n(1 + P)

B COS<'1<§ + ﬁ))] * i[— Bsin(n(1 + B)
ol )] o

which represents the Fourier transform of the function
Jo(C) in the form of equation (9) and describes the
one-point statistics of completely segregated scalar
field fluctuations C(x, t) determined by formula (3).

Since the characteristic function is generally a
complex one, then equation (32) is split up into two
equations for the the real and imaginary parts of the
function @ (n).

The mean reagent concentration at an arbitrary
point x is calculated by the formula
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F1G. 1. (a) Evolution of the function Pi(r) for the case of a
‘fast chemical reaction’. (b) Variation of the mean rate of
scalar fluctuation intensity dissipation.

€y =1 f {(,,5(,,) 0.+ yfsinn (4 + )
0

N cos(n+\(B/B + B) — cos(n(B — 1))
2

n
ol (n)[_ (1+ ﬂ/QCOS(Zm(ﬂ/ﬁ + B)
. SinCr (BB + /i)l — sin(n(f — 1»]} i @0

Here 5.4, =(1 + 4), 6 > 0, 5 > 0; ¢¥(n), ©l(n) are the
real and imaginary parts of the characteristic function
@n).

Formula (40) can be obtained from expression (6)
with the aid of formulae (12).

It is seen from the predicted results for the function
Pi(r), which are given in Figs. 1(a) and (b), that in the
initial stage the evolution of this function reduces to
its extension to the side of smaller scales. Here the
mean scale decreases sharply, the dissipation rate
N(x) increases [Fig. 1(b)] being indicative of the small-
scale turbulent mixing in the flow. Starting from

)

¢

¢~ (n)

Fi1G. 2. Evolution of the real (a) and imaginary (b) parts of
the characteristic function ¢,(n) in the case of a ‘fast chemical
reaction’ at = 2 and Sc ~ 10%,

x ~ 0.03, the fast stage of mixing terminates and a
slow evolution of the function P%(r) begins. The mean
scale starts to increase and the rate of dissipation to
decrease. In this stage the form of the function P<(r)
becomes less sensitive to a change in the scalar field
structure. However, a more intensive evolution of the
characteristic function ¢,(n) begins in this case. It
is seen from Figs. 2(a) and (b) that equation (32)
qualitatively models the behaviour of this function,
indicating the formation of a homogeneous mixing
from formerly separate reagents.

Figure 3 presents the results of calculation of the
dependence of the mean reaction rate of the r.m.s.
fluctuations at different values of the stoichiometric
ratio f and gives a comparison with the experimental
data from work [1]. It is seen that the proposed
model gives an adequate description of the experimen-
tal results in the case of a very fast chemical reaction.

THE CASE OF A MODERATELY FAST CHEMICAL
REACTION

The proposed statistical model of the mixing of
reagents, somewhat improved, can also be used to
estimate the mean time of chemical reaction in the
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F1G. 3. Comparison of experimental data [ 1] with the results
predicted on the basis of the ‘fast chemical reaction” model
for different values of §.

case of comparable characteristic times of reaction
and turbulent mixing, ie. for the case of moderate
Damkdéhler numbers. Then, the mean concentration
of reagent A should be determined from the equation

d{Ca(x))

Ulx)——"—= = {walx)>

dx 1)

where w,(x) is the source term.
A conventional expression for the source term has
the form

Wwalx) = k(T)C,Cp. (42)

Even with the temperature fluctuations ignored, a
two-dimensional probability distribution function is
required to obtain the mean value {w,(x)>. To remain
at the level of one-dimensional distribution, it will be
assumed that the concentrations of reagents A and B
are coupled through the relation

Calx,t) + Cy(x,t) = Co,

where C, is the maximum concentration of reagents.
With regard to this coupling, the expression for
w,(x) will have the form

Walx) = K(T)CA(Co — Ca). (43)
The introduction of new variables
~ Ca wA
=2 = kKT)Cy; = — 44
C o k=KT)Cop w C. (44)
will yield the following expression for w
w=kC(1 - (). (45)

Expression (45) is convenient as it is determined by
the concentration field of only one scalar with its
value depending entirely on the quality of mixing.
The value of w is indeed close to zero at those points
where C =0 or € =1, ie. where there are pure
reagents; the quantity w has the maximum at the
points where € = 0.5, i.e. where uniform mixing of

reagents is attained [10].

The equation for the mean concentration {(C) with
the source term in the form of equation (45) acquires
the form

v %E - _kgcesn - - e o

Here ¢ = C — (&>
The r.m.s. value of the fluctuations of reagent {¢?)>
can be calculated from the formula

2

0
ey = —6—n2tp§(n)l.,=o

47
where @R(n) is the real part of the characteristic
function of the reagent A field.

The equation for the characteristic function ¢,(n)
will have the same form as that of equation (32), with
the RHS having only the source term W¢ in the form

22
0—] o«(n).

W= — kn[i<cz> +(1 - 2<C>)% it
(48)

The initial condition for the function ¢.(n) is

@oln) = [(1 — {Cod)cosn<Co)
+ (Codeos(n(l — (Co)))]
+i[—(1 = <Co))sinn{Co»

+ {Codsin(n(1l — (C))]- (49)

The value of (C,> can be taken between 0 and 1.

To solve the equation for the characteristic function,
it is necessary to know the functions N(x) and d(x)
which are calculated from the function Pi(r) by
formulae (33), (34), (35) and (10'). The equation for
Pi(r) will differ then from equation (18) by the presence
of the source term on its RHS

0

W, = —2k(1 — 2(CY)Pir) — 2ka T(r). (50)

Here the function T, (r) is the two-point, third-order
moment of the turbulent reagent scalar field
Tr) = {c*(x)e(x + 1)>. (51)

For this function the following approximation was
used

B(r,x)
B0, x)’

I(r) = T(0) (52)

Here T(0) is the one-point, third-order moment
of the field c(x,t). It can be calculated from the
characteristic function by the following formula
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FIG. 4. (a,b) Comparison of experimental data [1] with the
results predicted on the basis of the ‘moderately fast chemical
reaction’ model for Da = 7 and Sc ~ 10°.

10 = -2

pae (53)

(Pi(ﬂ)q =0-

Taking into account formula (52) and also formulae
(9) and (10), the equation for W;, can be rewritten in
the form

T,(0)
3 (x)

The function P (r), required to solve the equation for

W, = —2k[1 —2Cx)> — ]Pi(r)- (54)

Pi(r), can be found from equation (23). The initial
conditions for the functions P(r) and P.(r) can be
selected to be the same, as in the case of the passive
scalar, i.e. in the form of equation (38).

Thus, besides equation (46) for (C(x)), the model
of the mixing of reagents in the case of moderately
fast chemistry includes equation (32) for ¢,(n), aug-
mented on the RHS with the source term (48);
equation (18), augmented on the RHS with term (54);
and equation (23) for P,(r). The results of calculations,
presented in Figs. 4(a) and (b), indicate that the model
can be used to estimate the chemical reaction mean
rate depending on the conditions of the problem.
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UN MODELE D’ECOULEMENT STATISTIQUEMENT TURBULENT AVEC REACTION

Résumé—On présente un modéle du mélange turbulent de réactants qui utilise les équations couplées
intégrodifférentielles pour les fonctions qui décrivent la distribution de I’énergie turbulente et de I'écart-
type des fluctuations scalaires sur différentes échelles de longueur, et aussi pour la fonction caractéristique
qui représente la transformée de Fourier de la densité de probabilité des fluctuations scalaires. Le modéle
permet le calcul de la vitesse moyenne de la réaction chimique dans un écoulement turbulent pour une
“chimie trés rapide*. Une solution numérique est donnée pour le systéme d’équations avec différentes
conditions et une comparaison est faite avec des données expérimentales. On suggére la voie possible
d’extension du modéle dans le cas d’une *“‘chimie modérément rapide”.
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EIN STATISTISCHES MODELL TURBULENTER REAGIERENDER STROMUNG

Zusammenfassung—Es wird ein Modell der turbulenten Vermischung von Reaktanden vorgestellt, welches
die gekoppelten Integro-Differential-Gleichungen fiir die Verteilung der turbulenten Energie und des
Effektivwertes der skalaren Schwankungen iber unterschiedliche Lingen und fur die Fourier-Trans-
formation der punktuellen Wahrscheinlichkeitsdichte der Schwankungen des Skalarfeldes enthalt. Das
Modell ist fiir die Berechnung der mittleren Reaktionsgeschwindigkeit in turbulenten Strémungen im
Bereich der *‘schnellen Chemie™ vorgesehen. Es wird eine numerische Losung des Gleichungssystems fir
unterschiedliche Bedingungen angegeben, ein Vergleich mit experimentellen Daten wurde durchgefiihrt. Die
Moglichkeit einer Erweiterung des Modells fiir den Fall der ““mittel-schnellen Chemie” wird vorgeschlagen.

CTATUCTHUYECKASL MOJEJIb TYPBYJIEHTHOIO PEATUPYIOIETO MTOTOKA

Amnoramus—IIpencrapieHa MoJeb TypOyJeHTHOTO CMEILEHHA PEareHTOB, BKJIOYAIOWAs TPH CBA3AH-
HbIX HHTerpoauddepeHUNanbHBIX YpaBHeHHS 18 (YHKUMH, ONMUCBIBAIOLUMX paclpejesieHue HEPruu
TypOyNEeHTHOCTH, CpEHEKBAAPATUYHOMN BETHUHHB! QIYKTyauuii CKaIspHOTo MOJIs MO pa3/IMYHbIM MacLu-
TabaM JUIMHBL ¥ [ XapaKTepUCTHYeCKOR (YHKIMH, ABJIsAIoLIeHCa npeobpazosanueM Pypbe oHOTOYEY-
HOM IUIOTHOCTH BEPOSTHOCTH 3HadeHMH (GUyKTyalmMil cxaIspHOro mojs. 3Ta Mojeib NpeaHa3HayeHa
[UISl BBIYMCJIEHHA CpelHell CKOPOCTH XMMHYECKOH peakliH B TYpPOYJIEHTHOM INOTOKE B Cllydae «OYE€HB
6bicTpoit xMMuM». TIpHBENEHO YMC/MEHHOE PEINCHHE CHCTEMBl YPABHEHHH A PasJMYHBIX YCJAOBHH M
JAHO CPaBHEHHE ¢ IKCIEPUMEHTAILHBIMU JaHHBIMH. YKa3aH BO3MOXHBIH c1oco6 06001erns npeacTas-
JIEHHOM MOMEJIH Ha CIy¥ail «yMEpEeHHO OBICTPOH XMMHH».



